Using Fractal Downscaling of Satellite Precipitation Products for Hydrometeorological Applications

نویسندگان

  • KUN TAO
  • ANA P. BARROS
چکیده

The objective of spatial downscaling strategies is to increase the information content of coarse datasets at smaller scales. In the case of quantitative precipitation estimation (QPE) for hydrological applications, the goal is to close the scale gap between the spatial resolution of coarse datasets (e.g., gridded satellite precipitation products at resolution L 3 L) and the high resolution (l 3 l; L l) necessary to capture the spatial features that determine spatial variability of water flows and water stores in the landscape. In essence, the downscaling process consists of weaving subgrid-scale heterogeneity over a desired range of wavelengths in the original field. The defining question is, which properties, statistical and otherwise, of the target field (the known observable at the desired spatial resolution) should be matched, with the caveat that downscaling methods be as a general as possible and therefore ideally without case-specific constraints and/or calibration requirements? Here, the attention is focused on two simple fractal downscaling methods using iterated functions systems (IFS) and fractal Brownian surfaces (FBS) that meet this requirement. The two methods were applied to disaggregate spatially 27 summertime convective storms in the central United States during 2007 at three consecutive times (1800, 2100, and 0000 UTC, thus 81 fields overall) from the Tropical Rainfall Measuring Mission (TRMM) version 6 (V6) 3B42 precipitation product (;25-km grid spacing) to the same resolution as the NCEP stage IV products (;4-km grid spacing). Results from bilinear interpolation are used as the control. A fundamental distinction between IFS and FBS is that the latter implies a distribution of downscaled fields and thus an ensemble solution, whereas the former provides a single solution. The downscaling effectiveness is assessed using fractal measures (the spectral exponent b, fractal dimension D, Hurst coefficient H, and roughness amplitude R) and traditional operational scores statistics scores [false alarm rate (FR), probability of detection (PD), threat score (TS), and Heidke skill score (HSS)], as well as bias and the root-mean-square error (RMSE). The results show that both IFS and FBS fractal interpolation perform well with regard to operational skill scores, and they meet the additional requirement of generating structurally consistent fields. Furthermore, confidence intervals can be directly generated from the FBS ensemble. The results were used to diagnose errors relevant for hydrometeorological applications, in particular a spatial displacement with characteristic length of at least 50 km (2500 km) in the location of peak rainfall intensities for the cases studied.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation CMIP5 Models In Order to Simulate Rainfall by using a Combination of Precipitation data Network Aphrodit and Satellite Precipitation Persiann-cdr In Khuzestan Province

One of the most important Limitation General Circulation Models , Large scale are being simulation of climatic variables. So should With Various method are downscaled, The ability to have identified a study area. Choose a suitable GCM model for the study area Very important role In the simulation  parameter (precipitation) is intended for future. In this research of CMIP5 Models Contains BCC-CS...

متن کامل

Mapping Fine Spatial Resolution Precipitation from TRMM Precipitation Datasets Using an Ensemble Learning Method and MODIS Optical Products in China

Precipitation data are important for the fields of hydrology and meteorology, and are fundamental for ecosystem monitoring and climate change research. Satellite-based precipitation products are already able to provide high temporal resolution precipitation information at a global level. However, the coarse spatial resolution has restricted their use in regional level studies. In this study, mo...

متن کامل

Downscaling of remotely sensed soil moisture with a modified fractal interpolation method using contraction mapping and ancillary data

Previous work showed that remotely sensed soil moisture fields exhibit multiscaling and multifractal behavior varying with the scales of observations and hydrometeorological forcing (Remote Sens. Environ. 81 (2002) 1). Specifically, it was determined that this multiscaling behavior is consistent with the scaling of soil hydraulic properties and vegetation cover, while the multifractal behavior ...

متن کامل

Spatial Scale Gap Filling Using an Unmanned Aerial System: A Statistical Downscaling Method for Applications in Precision Agriculture

Applications of satellite-borne observations in precision agriculture (PA) are often limited due to the coarse spatial resolution of satellite imagery. This paper uses high-resolution airborne observations to increase the spatial resolution of satellite data for related applications in PA. A new variational downscaling scheme is presented that uses coincident aerial imagery products from "Aggie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010